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Monolithically integrated dual-wavelength photodetector

based on a step-shaped Fabry-Pérot filter
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A novel long wavelength photodetector with dual-wavelength spectral response is designed and fabricated
using a step-shaped Fabry-Pérot (F-P) filter structure. The step-shaped GaAs/AlGaAs distributed Bragg
reflectors and the InP PIN photodetector are grown on a GaAs substrate using low pressure metal organic
chemical vapor deposition. High quality GaAs/InP heteroepitaxy is realized by employing a thin low
temperature buffer layer. The photodetector structure is optimized by theoretical simulation. This device
has a dual-peak distance of 19 nm (1 558 and 1 577 nm). The 3-dB bandwidth of 16 GHz is simultaneously
obtained with peak quantum efficiencies of 8.5% and 8.6% around 1 558 and 1 577 nm, respectively.
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Dual-wavelength photodetectors in the 1.3- or 1.55-µm
wavelength regions have significant potential in optical-
fiber communication systems, especially for numerous
microplate-based applications that aim to reduce opti-
cal interference caused by crosstalk, dispertion, or other
impact factors of energy transmission and loss in opti-
cal transmission systems[1−5]. The operation of dual-
wavelength response has been demonstrated in several
structures, including a taper substrate[6], two stacks
of quantum-well structures[7], and two photodiodes[8].
However, the attractive approach of realizing a dual-
wavelength photodetector with step-shaped Fabry-Pérot
(F-P) filter has yet to be reported.

Furthermore, the distributed Bragg reflectors (DBR)
in these F-P filters have been made from various ma-
terials, such as AlInGaAs/InAlAs[9], InGaAsP/InP[10],
metamorphic GaAs/AlAs[11], and dielectric mirrors[12];
however, they all have the common problem of poor
refractive index contrast. Among these candidates,
GaAs/AlGaAs are the most promising DBRs because
of their good electronic properties, reasonably low car-
rier recombination rates, and good refractive index con-
trast. However, for long wavelength (from 1.3 to 1.8
µm) photodetector fabrication, the PIN structure is
preferred to be InP based. Several approaches on in-
tegrating GaAs/AlGaAs DBRs with the InP-based PIN
photodetectors have been investigated, such as employ-
ing a thin, low temperature buffer layer[13], fusing the
InP-based active region with GaAs-based DBRs[14],
and growing metamorphic GaAs/AlGaAs DBRs on
InP-based materials[15]; these have been realized in
tunable photodetectors[13], resonant-cavity-enhanced
photodetectors[16], and vertical-cavity surface-emitting
lasers[17], respectively.

In this letter, we propose a novel dual-wavelength pho-
todetector realized by integrating a step-shaped GaAs
based F-P filter with an InP-based PIN photodetector.
High quality GaAs/InP heteroepitaxy is realized using
a thin, low temperature buffer layer. We design and

fabricate monolithically integrated step-shaped photode-
tectors that exhibit high spectrum and speed responses.

Figure 1 shows the proposed bottom-injection type
photodetector with step-shaped F-P filter. The inci-
dent light passes through the step-shaped filter into the
PIN photodetector. The GaAs-based filter was con-
structed using a five-wave-thick GaAs cavity layer and
two distributed Bragg reflectors. The bottom and top
reflectors consisted of 22 pairs of quarter-wave stacks of
GaAs and AlGaAs layers, respectively. Then an InP-
In0.53Ga0.47As-InP PIN structure was then integrated
with the step-shaped F-P filter.

We used the transfer matrix method to simulate the
spectral response. The absorption coefficient of ac-
tive layer was 0.68 µm−1. If the GaAs cavity had two

Fig. 1. Schematic structure of the photodetector with step-
shaped filter.
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Fig. 2. Quantum efficiency of the dual-wavelength photode-
tectors with step-shaped F-P filter (∆h has three different
lengths, a=10 nm (solid curve), b=20 nm (dotted curve), and
c=30 nm (dash curve)).

different lengths h1, h2 (Fig. 1), the total output re-
sponse was superimposed by the two responses, each
taking 50% weight to the final superimposition. The
dual-wavelength response is dependent on the proper
change in thickness, which is ∆h = h1 − h2, and proper
∆h can lead to a proper dual-peak distance. Although
the dual-wavelength response can still be attained, the
dual-peak distance of the spectral response becomes very
narrow at about 9 nm between 1 551 and 1 560 nm when
∆h is 10 nm. Then, we obtain the quantum efficiency
with the change of the dual-peak distance (Fig. 2). Next,
we enlarged the dual-peak distance by designing the step
distance of the GaAs cavity layer with the different
lengths of a, b, and c at 0, 20, and 30 nm, respectively.
From these, dual-peak distances of 7, 14, and 16 nm, re-
spectively, are obtained. The dual-peak distance widens
when the ∆h increases.

The structure was grown through low pressure metal
organic chemical vapor deposition (LP-MOCVD) on a
semi-insulating GaAs substrate. Our MOCVD used
Trimethylindium (TMIn) and Trimethylgallium (TMGa)
as group-III precursors; AsH3 and PH3 as group-V pre-
cursors; as well as SiH4 and diethylzinc (DEZn) as n-
type and p-type dopant precursors. The growth pro-
cedure was divided into three parts. First, 22 pairs of
quarter-wave stacks of GaAs/AlGaAs layers (λ0=1550
nm) and an 800-nm GaAs cavity layer were grown on a
semi-insulating GaAs substrate. Second, four steps were
etched on the epitaxial layer surface of the GaAs cavity
using a H2SO4/H2O2/H2O solution. The step height
and width were 20 and 800 nm, respectively. Third,
after degreasing in organic solvents, another 800-nm
GaAs cavity layer and 22 pairs of quarter-wave stacks
of GaAs/AlGaAs layers were regrown. Next, a 48-nm
InP low temperature buffer (LTB) layer was grown at
723.15 K. This thin LTB layer realized the high quality
GaAs/InP heteroepitaxy growth. The PIN structure of
the photodetectors was grown subsequently, which con-
sisted of several layers: 256-nm n-type InP, 468-nm InP
spacer, 400-nm In0.53Ga0.47 As absorber, 240-nm InP
spacer, and 200-nm p-type InGaAs. Finally, a 120-nm
InP cap layer was grown.

The device was fabricated through the following proce-
dures. The 120-nm InP cap layer was selectively removed
in the HCl/H3PO4 solution. After lithography, Ti and

Au were evaporated and patterned by a lift-off process
to form an annular p+ Ohmic contact with an inter-
nal diameter of 30 µm. A 42-µm diameter top round
mesa was formed by etching down to the n-type InP con-
tact layer. The InP and InGaAs layers were selectively
removed from the HCl/H3PO4 and H2SO4/H2O2/H2O
solutions, respectively. The etch rate was highly con-
trolled by inspecting the test samples. The n+ Ohmic
contact was achieved by a Pt/Ti/Pt/Au lift-off. Then
a photodefinable polyimide layer was used for passiva-
tion/planarization prior to the deposition of the metal
coplanar electrode; this was then annealed for passiva-
tion. Ti/Au was evaporated and patterned by a lift-off
process to form the electrodes. Finally, a novel metal
ground-signal-ground (GSG) electrode was linked to the
photodetector for high-speed interconnection. After pol-
ishing, the device was considered complete. Figure 3
shows the optical microscope images of the device (Φ 15
and Φ 40 µm).

Figure 4 shows the double-crystal X-ray diffraction
scans of the epitaxial layer, in which the left peak is in-
troduced by the InP-based PIN structure; the full-width
at half-maximum (FWHM) value is 480′′. The high qual-
ity InP/GaAs heteroepitaxy growth is realized. Based
on the GaAs substrate, the two peaks on the right cor-
respond to the GaAs/AlGaAs F-P cavities, respectively,
and the left peak corresponds to AlGaAs, because its
crystal lattice constant is larger than GaAs.

The spectral response was measured in the 1 460–1610-
nm wavelength range using an Anritsu Tunics SCL tun-
able laser with a single-mode fiber pigtail as the light
source.

The photodetector was back-illuminated vertically. An
input beam was obtained by collimating the light from
the fiber with a fiber collimator. Figure 5 shows the

Fig. 3. Optical micrograph of the fabricated step-shaped pho-
todetector showing (a) Φ 5-µm photosensitive area and (b) Φ
40-µm photosensitive area.

Fig. 4. Double crystal X-ray diffraction ω-2θ scans.
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spectral response of the device, indicating the peak wave-
lengths of 1 558 and 1 577 nm. The right curve corre-
sponds to the as-grown wafer, and the other corresponds
to the cumulative recess etch of 20 nm in the F-P cavity.
The spectral linewidth is less than 0.5 nm (FWHM),
which is mainly dependent on the number of DBR lay-
ers. Thus, more pairs of DBR layers are required for
a narrower linewidth. This device has a dual-peak dis-
tance of 19 nm (1 558 and 1 577 nm). The peak quantum
efficiencies are 8.5% and 8.6% around 1 558 and 1 577
nm, respectively.

The bandwidths associated with the carrier transit-
time and the RC time-constant determine the high speed
performance of a photodetector. The bandwidths were
measured with a tunable laser and an Agilent E8363C
network analyzer. The device was contacted by a mi-
crowave probe with a 50-Ω characteristic impedance and
was biased through an internal bias tee. Figure 6 shows
the measured frequency response, the 3-dB bandwidth
for the Φ 15 and Φ 40 µm photosensitive areas achieve
16 and 13 GHz, respectively, at a 200-nm i-region thick-
ness and 5.52×106-cm/s average saturation drift veloc-
ity. Thus, a smaller area is preferred in increasing the
response speed of the photodetector.

The room temperature current-voltage characteristic of
the device was measured without illumination. The dark
current slowly increases from 2 nA (at 0 V) to 20 nA (at
6 V) (Fig. 7). At larger reverse biases, the dark current
increases more rapidly due to tunneling at a higher elec-
tric field. The dark current is 10 nA at a reverse bias of 3
V (Fig. 7 inset). Several sources contributed to the dark
current, including the imperfect surface passivation[18],
diffusion current, generation recombination current, and
tunneling current at high bias voltages[19]. The gen-
eration recombination current is mainly caused by the
background dopant and the mismatch dislocations[20].
Using a thin LTB layer, the high quality heteroepitaxy
growth reduced the generation recombination current
due to lower mismatch dislocations.

In conclusion, we propose a novel photodetector with
dual-wavelength spectral response by designing the pho-
todetector structure and adjusting the thickness of the
step distance of the GaAs cavity. The dual-peak distance
widens as the ∆h increases upon device optimization us-
ing the transfer matrix method. We also demonstrate
a high speed, high efficiency, and dual wavelength pho-
todetector using the step-shaped structure. Furthermore,

Fig. 5. Measured response spectrum of the fabricated dual-
wavelength photodetector.

Fig. 6. Measured frequency response of the photodetectors
showing Φ 15-µm photosensitive area and Φ 40-µm photosen-
sitive area.

Fig. 7. Measured dark current against the reverse bias of the
device. Inset: dark current for reverse bias from 0 to 3 V.

we obtain a dual-peak distance of 19 nm, peak quantum
efficiency of over 8%, and 3-dB bandwidth over 16 GHz.
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